On a cold morning, a metal surface will feel colder to touch than a wooden surface because
Metal has high specific heat
Metal has high thermal conductivity
Metal has low specific heat
Metal has low thermal conductivity
The outer faces of a rectangular slab made of equal thickness of iron and brass are maintained at $100^{\circ} C$ and $0^{\circ} C$ respectively. The temperature at the interface is ........... $^{\circ} C$ (Thermal conductivity of iron and brass are $0.2$ and $0.3$ respectively.)
According to the experiment of Ingen Hausz the relation between the thermal conductivity of a metal rod is $ K$ and the length of the rod whenever the wax melts is
A body of length 1m having cross sectional area $0.75\;m^2$ has heat flow through it at the rate of $ 6000\; Joule/sec$ . Then find the temperature difference if $K = 200\;J{m^{ - 1}}{K^{ - 1}}$ ...... $^oC$
The ratio of the diameters of two metallic rods of the same material is $2 : 1$ and their lengths are in the ratio $1 : 4$ . If the temperature difference between their ends are equal, the rate of flow of heat in them will be in the ratio
Three rods of Copper, Brass and Steel are welded together to form a $Y$ shaped structure. Area of cross - section of each rod $= 4\ cm^2$ . End of copper rod is maintained at $100^o C $ where as ends ofbrass and steel are kept at $0^o C$. Lengths of the copper, brass and steel rods are $46, 13$ and $12\ cms$ respectively. The rods are thermally insulated from surroundings excepts at ends. Thermal conductivities of copper, brass and steel are $0.92, 0.26$ and $0.12\ CGS$ units respectively. Rate ofheat flow through copper rod is ....... $cal\, s^{-1}$